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BOUNDED ERRORSCHEMESFOR THE WAVE EQUATION ON COMPLEX DOMAINS*

SAULABARBANEL?,ADIDITKOWSKI$,ANDAMIRYEFET$

Abstract. Thispaperconsiderstheapplicationof themethodof boundarypenaltyterms("SAT")to
thenumericalsolutionofthewaveequationoncomplexshapeswithDirichletboundaryconditions.A theory
isdeveloped,in a semi-discretesetting,thatallowstheuseof a Cartesian grid on complex geometries, yet

maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving

the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method

in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders o] magnitude

in the level of the L2-error.

Key words. Maxwell's equations, wave equation, finite difference time domain, error bounds, boundary

conditions, complex geometries, staircasing

Subject classification. Applied and Numerical Mathematics

1. Introduction. Hyperbolic systems of P.D.E.'s describing physical situations such as electro-magnetism,

acoustics, elastic waves, etc, may under many circumstances be cast as wave equations for the various field

components.

One class of problems is that of solving numerically the Dirichlet problem on complex shapes, e.g., inside

wave guides. For sufficiently non-simple geometries, the option of transforming the problem to body-fitted

coordinates is not always a viable option, especially in three space dimensions. There are other options, such

as using Cartesian grids and approximating the body shape via "staircasing", "diagonal split cell model",

etc (see for example Chapter 10 in reference [4]). It is well known that these devices are not very efficacious,

particularly in the high frequency regime. We shall demonstrate that "staircasing" can fail even for low

frequencies.

In this paper we consider the application of the method of boundary penalty terms ( "SAT", see references

[1], [2], [3]) to the numerical solution of the wave equation in a finite domain with Dirichlet boundary

conditions.

In Section 2 we develop the theory that allows us to use a Cartesian grid on complex geometries and yet

maintain the order accuracy with a linear temporal error-bound.

In Section 3 we construct a second order accurate scheme that fulfills the conditions imposed by the

theory presented in Section 2.

Section 4 is devoted to a numerical example the solution of the transverse magnetic (TM) Maxwell's

equations [4] between two concentric circles. (This configuration might be considered as a cross-section of a

very long wave-guide.) This problem is solved using four different numerical algorithms. Two of them solve

the first order system with "staircasing" the Yee staggered scheme [6] and a 4 th order spatially staggered

scheme due to Turkel and Yefet [5]. The other two solve the wave equation directly on a non-staggered

*This research was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-

19480 and NAS1-97046 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

tS. Abarbanel was also supported in part by the Air Force Office of Scientific research Grant No. AFOSR-F49620-95-1-0074,

and by the Department of Energy under grant DOE-DE-FG02-95ER25239. School of Mathematical Sciences, Department of

Applied Mathematics, Tel Aviv University, Tel Aviv, ISRAEL.

$School of Mathematical Sciences, Department of Applied Mathematics, Tel Aviv University, Tel Aviv, ISRAEL.



Cartesian grid, one with the SAT formulation and one without. All three "standard" (non-SAT) algorithms

have very large errors; the SAT algorithm has errors that ar_ at least two order of magnitude smaller.

Summary and conclusions, and ideas for future work arc presented in Section 5.

2. Theoretical Framework of the Method. In referen_:e [1], [2] and [3], it was shown how the case

of a one-dimensional P.D.E. can be used as a building block fo_ the multidimensional case for constructing

error-bounded algorithms over complex geometries with Dirich[et boundary condition. We therefore start

with the following one-dimensional problem:

(2.1) 02u- 02u+f(x,t); FL <x'::FR, t >0
Ot 2 Ox 2

(2.0a) u(z, 0) = u0(x)

(2.0b) 0Nu(z,O) = U_o(X)

(2.0c) u(FL,t) = gL(t)

(2.0d) u(FR, t) = gR(t)

and f(x, t) E C 2.

Let us discretize (2.1) spatially on the uniform grid presented in Figure 2.1. Note that the boundary

points do not necessarily coincide withxl andxN. Set xj+l - xj = h, 1 < j <_ N-l; xl--FL = _/Lh,

0 _ _/L "( 1; FR -- XN = _Rh, 0 _ _[R < 1.

Ax=h

• J I J I I I I I 1 •

j j._ x__2 x._l xu

FIG. 2.1. One dimensional :Trid.

Since, unlike the cases discussed in [1], [2], equation (2.1) has a second time derivative, attempts to

apply naively the methods presented there fail. The reason is t]: at if we follow the procedure used there and

write the following discrete approximation to (2.1),

d_
-- = r" e(2.2) dt 2 u Du + f(t) + .

where u is the projection of the exact solution u(x, t) onto the grid, i.e. u(xj, t) = uj(t) A=u(t); and write

the numerical scheme

d2v

(2.3) dt 2 - [Dv - TL(ALv -- gL) -- TR(AF:v -- gR)] + f(t) ,



thentheequationfortheerrorvectore= u- v becomes

(2.4) d 2 e_Me+T.
dt 2

In the above, v is the numerical approximation to u, and

(2.5) M = D - 7LAL -- TRAR •

D is a differentiation matrix of the proper order of accuracy that does not use boundary values. The matrices

AL and AR are defined by the relations

(2.6) ALU ----gL -- TL, Anu = gR -- In ,

i.e., each row in AL(AR) is composed of the coefficients extrapolating u to its boundary value gL(gR) at

FL(FR) to within the order of accuracy. (The error is then TL(TR).) The diagonal matrices TL and TR are

given by

TL = diag(TL1, TL2,''', TLN); VR = diag(Tnl, TRy,''', TRN) •

The constrain on the construction of the A's, T'S and D is that M in (2.4) bc negative definite. The negative

definiteness of M is a necessary condition for extending the 1-D theory to the multidimensional case (see

[1],[31). Also in (2.4)

(2.7) W = Te - _-LTL -- TnTR = (T1, T2,'", Tin,'", TN) T •

If the matrix M can be diagonalized*, then

(2.8) M = Q-1AQ

with the diagonal matrix, A, having the eigenvalues of M. Defining /_ = Q e, equation (2.4) becomes

d2/_
-A/_+QT

dt 2

(2.9) = i/_ + T.

This is an un-coupled system of O.D.E's. The general solution for the m th equation is:

lf[#re(t) = c_ e "Z_t + crn_e -'/-_t + _ sinh (_m(t - s))Tm(s)ds .

Recalling that at t = 0, e = et = 0 (i.e. _ = _t = 0 at t = 0), the solution of (2.9) becomes:

1

f0t Tin(s)sinh [V/A--_ (t - s)]ds(2.10) #re(t)- _ .

Note that unless all the eigenvalues of M are real and non-positive some of the x/_'s will have a positive

real part, in which that case at least one of the #m's may grow exponentially in time. In order to prevent

this, we have to demand that M, in addition to being negative definite, also possess only real eigenvalues.

• Extensive numerical evidence has shown that the M in [1],[2] (i.e. representing the second derivative to 4TM and 2nd order

accuracy, respectively) has distinct eigenvalues and hence is diagonalizable.



F_rthcrmore,in order to use the 1-D scheme as a building blo _k for multidimensional schemes, M should

be built in a way that verifies that the property of real neg_:_tive eigenvalucs carries over to the multi-

dimensional differentiating matrix. One way to achieve this g_al is to construct M as a negative-definite

symmetric matrix. Then an estimate on the error bound can be derived directly from the solution (2.10),

1 ^

]#m(t)l < _T,,_t

where Tram = max0<s<t ]Tm(s)]. Then, for a normalized Q,

II_il = LI.ll-< liITM It,(2.11)

where co = minm=l,...,N _X/_I' Therefore II ell grows at most linearly with t.

This result, of a linear temporal bound on the error-norm can also be derived by resorting to energy

method (see [3]), instead of directly from the solution.

Also, as mentioned before, the construction of multi-dimemional case

02u
- V2u + f(x, t)

Ot_

on complex shapes is completely analogous to the method indicated in [1], [3].

3. Construction of the Scheme. This section is devoted to the task of constructing a symmetric

negative definite matrix M for the case of a second order accurate finite difference algorithm.

Let
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(3.1)

where

(3.2)

and

(3.3)

0 0

0 1

-1 2

0

-2 1

0 -2 1

". 'o. '. "..

-1 2 0 -2

-1 2 -1

0 0 0

CN !--C2(k_2)ck = C2 d- N - 3 "

CN-1 -- C2

_=
N-3

Note, that as in [2] and [3], we had to resort to using connectivity terms, the last two matrices in (3.1).

(3.4) AL =

1 1

(2+ _L)(1 + _L) -_L(2 + _L) _(_L + _)

1
(2+ _L)(1+ _L) -'_L(2+ '_L) 2('_ + z_)

0 . . .

0

0

0

(3.5) AR =

1
o . o _(_R+_) -_R(2+_)

1
o ... o _(_R+_) -_R(2+_)

1
_(2 + "yR)(1 + 'TR)

_(2+ _R)(1+ "_R)

(3.6)
1

TL = _sdiag [TL1, TL 2 , TL 3, 0, . . . , 0, 0] ;

(3.7)
1

TR = 3-Tdiag [0, 0,..., 0, TRN_2, TRN_,, _'RN] ;

In order to make the matrix M = D - TLAL -- _'RAR symmetric we choose:

(1 - "_L) _YL
C2--

2

(1 - _R) "YR
CN- 1 --

2

3 - "YL -- 2 _[L TL1

TL2 =

1 JF'YL



(3.8)

(3.9)

-2 + _L -[- "_L TL1

TL3 : 2 -[- _'L

3 - _/n - 2 "YR_'RN

TRN_ 1 =- 1 + _/R

--2 + _R + "Y_VRN

TRN-2 : 2 _- "_R

TL1, TRN _ 4 .

The proof that the symmetric matrix M is indeed negative-definite is given in the Appendix to this

paper.

Note also that instead of solving (2.3) directly as a 2nd order O.D.E. system in time, one can solve

dw

d--t-= [Dv - TL(ALv -- gL) -- TR(ARV -- gR)] "+-f

dv
-- _W .
dt

(3.10)

The number of 'variables' has increased from N to 2N but one g_ins in the simplicity of the time integration.

4. Numerical Example.

field (TM, see [41) in two space dimensions:

(4.1) OE _ OHy OH_
Ot Ox Oy

(4.2) OHx_ OE
Ot Oy

(4.3) OHu _ OE
Ot Ox

Wc consider the dimensionless Maxwcll's equation for transverse magnetic

where Hx and Hy are the x and y components of the magnetic vector, H, and E is the electric field in the
1 1

z-direction. The set (4.1) (4.3) is to be solved in the space bet veen two concentric circles, _ < r < _. We

consider the case of perfectly conducting boundaries. Thus the _oundary conditions are given by

(4.4) E(½,0, t) = 0

(4.5) E(_, O,t) = O.

We choose the following initial conditions (note the polar coordinates r, 0):

(4.6) E(r, 0, 0) = cos 0 [J1 (wr) + a Y1 (wr)]

Uy(r,O,O) =-sin20{--1 [Jl(wr) +a Y (wr)]2car

1 [J0(car)- J_(car)+ _ y0 i_) - _ y_(_r)] }(4.7) 4

cos 2 0
Hx (r, 0, 0) -- [J1 (car) + a Y1 (car)]

car

(4.8) sin 2 O
2 P0(_0 -- J_(ca0 + _ r0(ca0 -- a r_(_r)]

whcrc the J,,'s and the Yn's are Bessel functions of the first anti second kind of order n, respectively. Also,

(4.9) a=_ 1.76368380110927; w=_ 9.813695999428405 .



TheexactsolutionoftheIBV problem(4.1)(4.8)isgivenby:

(4.10) E(r, O, t) = cos(wt + 0)[J1 (wr) + a Yl(wr)]
1

gy(r, O, t) = --- cos Ocos(wt + 9) [J1 (_r) + a I"1(wr)]
uJr

(4.11) ÷_- cos 9 sin(wt ÷ O)[Jo(wr) - J2(_r) ÷ a Yo(_r) - a Y2(wr)]

1
H_ (r, 0, t) = -- cos 9 cos(wt + 0) [Jx (wr) ÷ a Y1 (wr)]

tdr

_! sin O sin(wt + O)[Jo(wr) - J2(wr) + a Yo(wr) - a Y2(wr)](4.12) 2

We note that we can extract from (4.1)-(4.3) a wave equation for the electric field E,

(4.13) 02E 02E 02E-- ÷ --

Ot 2 Ox 2 69y2 "

The boundary conditions on E in (4.13) arc given by (4.4) (4.5). The initial condition E(r, 0, 0) is given by

(4.6). We need an additional initial condition on Et, which wc obtain by differentiating (4.10), namely

(4.14) Et (r, O, O) = -w sin 9 [gl (wr) ÷ a Yl (wr)] .

Four numerical schemes were used to solve the problem:

(i) The Yee scheme [6]. This second order accurate scheme is staggered both in space and time. This

entails putting initial conditions of Hz and Hy at At�2 rather than at t = 0. These initial conditions

are derived from the exact solution. The numerical solution is carried out on the "staircased" domain

shown in Figure 4.1.

(ii) A modification of the Yee scheme (designated Ty(2,4)), see [5]. This one has 4 th order spatial

accuracy and 2 nd order in time. The stagger and the "staircased" domain are maintained as before.

(iii) The SAT algorithm for the wave equation described in Sections 2 and 3. The grid used for the

numerical integration is shown in the right side of Figure 4.1. The time evolution is done by a 4 TM

order Runge-Kutta method.

(iv) An algorithm which formally looks like the SAT in (iii), but is applied to the "staircased" domain

of Figure 4.1 (rather than SAT one). To order O(h2), this is equivalent to using a standard spatial

central differencing scheme with the nodal points at edges of the domain given the boundary value

zero. Thc time integration is done as in the case (iii).

We first present the L2 error in E for all four schemes at t = 1 and t = 10 for the cases Ax = Ay = h =

1/40, h = 1/80 and h = 1/160, see Table 1. At was 2/3 h for the Yee scheme, h/18 for the Ty(2,4) scheme

and hi5 for the SAT schemes.

It is immediately apparent from the table that the SAT-error (scheme iii) is at least 2 orders of magnitude

smaller than that of the other three algorithms at all the various times and grid spacings.

Since the non-SAT schemes have errors which are unacceptably large we do not show details of their

temporal behavior. The SAT algorithm (scheme iii) has an L2 error which grows in time as shown in Figure

4.2. Wc see that this temporal growth is bound by a linear curve, whose slope depends on h. We note that

for all reasonable dimensionless time the error is quite small, especially for h < 1/80.

5. Conclusions and Discussion.

(i) It seems quite clear from the evidence that the failure of the non-SAT schemes is due to the fact

that "staircasing" misrepresents the shape of the body. In the SAT scheme, on the other hand, the

penalty terms take account of the true shape.



iiil\
iilr_

iilll

IIII l

[1111
IIIII
IIIII

!!!!.
::::]
::11!
:=:l
: i ,s

FIG. 4.1. The "staircased" domain (left) and the SAT grid (r_ght), h = 1/40.

h = 1/40 h = 1/_0 h = 1/160

t=l

i Yee 0.4322 0.363 5 0.1742

ii Ty(2,4) 0.4038 0.3347 0.1579

iii SAT 0.001203 0.0001705 1.5019e-05

iv Staircased 0.1022 0.050,H 0.01936

h = 1/40 h = 1/80 h = 1/160

t= 10

i Yee 0.5101 0.436i 0.6683

ii Ty(2,4) 0.2642 0.7079 0.7243

iii SAT 0.008435 0.0008354 8.2707e-05

iv Staircased 0.7929 0.4735 0.7829

TABLE 4.1

The L2 error.

(ii) The numerical results validate the theoretical prcdictio: is of the temporal behavior of thc L2 norm

of the error.

(iii) Grosso-modo the CPU time per node is of the same or(er for all schemes.

(iv) The results from Table 1 and Figure 4.2 seem to indi:ate that thc scheme (iii) converges as h 3,

although the algorithm has a truncation error of orde__ h 2. We do not understand this pleasant

anomaly, although it is possible that even with h - 1/130 we are not yet in thc asymptotic conver-

gence regime.

(v) In the future, we would like to apply the SAT method(:logy directly to hyperbolic systems such as

(4.1) (4.3). The theory is not complete yet.



L2 error

0.7

0.6

0.5

0.4

0.3

0.2

0.1 / h-l/80

h=l/160 t

200 400 600 800 I000

FIG. 4.2. SAT, L2 error vs. time.

Appendix. We dccompose thc matrix M, dcfined in (2.5) and (3.1) to (3.8) as follows:

(5.1) 1 [c_M_ + (1 - a)M2 + M3 + M4 + M5]M=_

whcrc:

(5.2) i 1

-2 1

1 -2

1

1

-2 1

1 -2 1

1 -2

1

1

-2

(5.3) M2 _

0 0 0

0 0 0

0 0 -1 1

1 -2 1

'.. ".

1 -2

0 1

1

-1

0

0

0

0

0



M3 = m ,

0 0

-1 1

1 -2

"°

1

1 -2

1

0

1

-1

0

0

0

0

(5.4)

0

C2

C3

CN-2

CN- 1

0 0 0

0 -1 1

0 1 -2

".

1

°. "..

1 -2 1

1 --1

0 0

(55) M4=

0

o 0

wherc:

and

m 1'1 = 1 + 2a - (1 + "YL) (2 -I- 'TL) "rL_
2

m_ '2 = --2 -- a + "YL(2 + "YL) "rL_

ml '3 = 1 - 3'L (1 q-_L)TL_
2

7_ - 4(I+ _) - _ (:+ _L)(I+ a_)
m4 2'2 ---- 2o_ q--

2 (l+'rz)

3'7L "_L 2

-_- + _ + "rL2rL_

--4 -[-"yL2 -- _L 3 -- _L 2 (I -b7L) TL_

m_ '3 : 1--o_----

3,3
m 4 ---- 2a -1-

2 (2+ _'L)

10



(_._)

where:

M5z

0 0

0 m5 N-I'N 2 7125N-1,N-1 N,N 1

mN5 ,N- 2 mN5 ,N 1 7nN, N

m_ 'N = 1 + 2_ - (1+ _R) (2 + _) TR_
2

raN5 'N-1 : --2 -- ol _- "JR (2 -_- _[R) TRN

7R (1 + "rR) TRN
raN5 'N-2 = 1 --

2

m_ -1'_-' = 2_ + 7_ - 4 (1 + _) - _2 (2 + _R) (1 + 4rRN)
2 (1+ _)

3"7R -t- _/R2
mN-I'N-2 = 1 - _ - _-- _ + .yR2rRN

7Y_5N-2'N-2 =- 2Ot _- --4 _- A/R2 -- _'R 3 -- _/R 2 (1 -}- _R) TRN

2 (2 + _R)

The matrix M1 is negative-definite and bounded away from 0 by h27r2 by the argument leading to eq.

(2.4.31), see appendix to chapter 2 in [3]. Ms is non-positive definite, see eq. (2.4.34) and (2.4.35) in that

appendix. From (3.2), (3.3) and (3.8) follows that ck _> 0, k = 1,..., N, therefore, the matrix M3 is non-

positive. For a given value of 0 < c_ < 1, TLI and TRt, can bc found such that the matrices M4 and M5 will

be non-positive, for all "YL and VR. For example: for c_ = 1/10, "rL1 = TRN = 4; for a = 1/2, TL1 _- TRN = 9

and for a = 8/10, TL1 : TRN : 24. This completes the proof that M is indeed a negative-definite matrix,

bounded away from 0 by air 2. Therefore the norm of the error vector I[ e II can grow at most linearly in

time, see equation (2.11).
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